Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adapting Virtual Embodiment through Reinforcement Learning
 
research article

Adapting Virtual Embodiment through Reinforcement Learning

Porssut, Thibault  
•
Hou, Yawen
•
Blanke, Olaf  
Show more
2021
IEEE Transactions on Visualization and Computer Graphics

In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g. for perspective-taking). In addition, the system can partially manipulate the displayed avatar movement through some distortion to make the overall experience more enjoyable and effective (e.g. training, exercising, rehabilitation). Despite its potential, an excessive distortion may become noticeable and break the feeling of being embodied into the avatar. Past researches have shown that individuals have a relatively high tolerance to movement distortions and a great variability of individual sensitivities to distortions. In this paper, we propose a method taking advantage of Reinforcement Learning (RL) to efficiently identify the magnitude of the maximum distortion that does not get noticed by an individual (further noted the detection threshold). We show through a controlled experiment with subjects that the RL method finds a more robust detection threshold compared to the adaptive staircase method, i.e. it is more able to prevent subjects from detecting the distortion when its amplitude is equal or below the threshold. Finally, the associated majority voting system makes the RL method able to handle more noise within the forced choices input than adaptive staircase. This last feature is essential for future use with physiological signals as these latter are even more susceptible to noise. It would then allow to calibrate embodiment individually to increase the effectiveness of the proposed interactions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TVCG2020_RL_Video.mp4

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

75.66 MB

Format

Video MP4

Checksum (MD5)

4a587aebd419549ebe6d929356dcb0ad

Loading...
Thumbnail Image
Name

TVCG__Adapting_Virtual_Embodiment_through_Reinforcement_Learning.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

8.15 MB

Format

Adobe PDF

Checksum (MD5)

9e1d70c2d590920d38083cee85c4aecf

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés