Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Intramolecular energy transfer in highly vibrationally excited methanol. III. Rotational and torsional analysis
 
research article

Intramolecular energy transfer in highly vibrationally excited methanol. III. Rotational and torsional analysis

Boyarkin, OV  
•
Rizzo, TR  
•
Perry, DS
1999
The Journal of Chemical Physics

We report here torsional analysis of rotationally resolved spectra of the 3 nu(1), 5 nu(1), and 6 nu(1) (OH stretch) bands of jet-cooled methanol. The upper states are reached by a double resonance excitation scheme involving the selection of single rotational states in the n1 fundamental band. Detection of the overtone transitions (n nu(1)<--nu(1)) is by infrared laser assisted photofragment spectroscopy (IRLAPS). The torsional tunneling frequency declines monotonically from 9.1 cm(-1) in the vibrational ground state to 1.6 cm(-1) at 6 nu(1). For the available rotational levels at 3 nu(1) (K = 0-3) and 6 nu(1) (K = 0,1), the pattern of torsional energies is approximately regular. To obtain the vibrational dependence of the torsional barrier V-3, it was necessary to use the OH radical and HOOH as models for the vibrational dependence of the torsional inertial constant F. The assumed linear dependence of V-3 on nu(1) accounts for the torsional tunneling splittings at nu(1) = 0, 3, and 6 and for the pattern of the torsional energies. V-3 increases by 40-45 cm(-1) per quantum of OH excitation. (C) 1999 American Institute of Physics. [S0021-9606(99)02417-4].

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.479076
Author(s)
Boyarkin, OV  
Rizzo, TR  
Perry, DS
Date Issued

1999

Published in
The Journal of Chemical Physics
Volume

110

Issue

23

Start page

11359

End page

11367

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPM  
Available on Infoscience
December 15, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/221334
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés