Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria
 
preprint

Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria

Reggente, Melania  
•
Schurgers, Nils
•
Mouhib, Mohammed
Show more
March 1, 2023

At the center of microbial bioelectricity applications lies the critical need to express foreign heme proteins that are capable of redirecting the electron flux of the cell’s metabolism. This study presents bioengineered Synechocystis sp. PCC 6803 cells capable of increased electrogenicity through the introduction of a genetic construct for cytochrome expression. We could demonstrate the functional expression of the periplasmic MtrA decaheme c-type cytochrome from Shewanella oneidensis, a dissimilatory metal-reducing exoelectrogen, inside Synechocystis. Protein expression was verified through western-blotting and immunostaining, and oxygen evolution, optical density, and absorption measurements confirm sustained cell activity and viability under the tested expression conditions. Furthermore, the bioengineered cells show enhanced mediated exoelectrogenicity, as confirmed through a colorimetric iron assay and electrochemical measurements. Compared to wildtype cells on graphite electrodes, the bioengineered cells show a 2-fold increase in light-dependent, extracellular electron transfer, achieving photocurrent densities of 4 μA/cm2 under white light illumination of ∼500 μmol m-2s-1. The increased capacitance obtained under illumination and suppressed photocurrents in the presence of the photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) suggest increased extraction of photosynthetically derived electrons from the recombinant cells. The improved bioelectricity transport across the outer membranes, as achieved through the heterologous heme expression inside cyanobacteria, presents new opportunities for re-wiring the metabolisms of light-harvesting microbes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2023.02.28.530417v1.full.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

restricted

License Condition

copyright

Size

946.98 KB

Format

Adobe PDF

Checksum (MD5)

5666dc72022bc504aea894cbb5479852

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés