Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Accessing homoleptic neutral and anionic five-coordinate Pr(<scp>iv</scp>) siloxide complexes
 
research article

Accessing homoleptic neutral and anionic five-coordinate Pr(iv) siloxide complexes

Pandey, Pragati  
•
Keener, Megan  
•
Rajeshkumar, Thayalan
Show more
2025
Chemical Science

Anionic Ln(iv) complexes were synthesised by tuning the reaction condition, demonstrating the possibility of accessing charged Pr(iv) complexes as a tool to manipulate the redox potential and therefore lead to more stable complexes.

Structurally characterized Pr(IV) complexes are limited to four examples because the ligands and reaction conditions capable of stabilizing Pr(IV) remain elusive. Here we identify reaction conditions allowing the synthesis of Pr(IV) complexes that were originally thought difficult to isolate. The Pr(IV) complexes of the tris(tert-butoxy)siloxide (–OSi(OtBu)3) and triphenylsiloxide (–OSiPh3) ligands, [PrIV(OSi(OtBu)3)4] (2-PrOtBu), [MPrIV(OSiPh3)5] (5M-PrPh) (M = K, Cs), and [KDB18C6][PrIV(OSiPh3)5], (5[KDB18C6-PrPh]) were isolated and fully characterized upon the oxidation of the tetrakis and pentakis(siloxide)praseodymium(III) ate complexes, [KPrIII(OSi(OtBu)3)4] (1-PrOtBu) and [M2PrIII(OSiPh3)5] (4M-PrPh) (M = K, Cs), using the thianthrene radical cation tetrafluoroborate oxidant, thiaBF4. The crucial role of reagents and reaction conditions, like thiaBF4 over the magic blue oxidant and non-coordinating over coordinating solvents, are demonstrated for the isolation of high valent Pr(IV) complexes. The solid state structural and electrochemical properties were studied and further augmented with theoretical calculations. The Pr(IV) oxidation state was further confirmed by electron paramagnetic resonance (EPR) and SQUID magnetometry measurements. Complexes 5M-PrPh and 5[KDB18C6]-PrPh provide the first example of anionic Ln(IV) complexes demonstrating the possibility of accessing charged Pr(IV) complexes as a tool to manipulate the redox potential and therefore access to more stable complexes with the same ligand.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1039_d5sc05500h.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.29 MB

Format

Adobe PDF

Checksum (MD5)

131a42396d4fe20edcda8cd64ae27c99

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés