Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Toward a microscopic description of flow near the jamming threshold
 
research article

Toward a microscopic description of flow near the jamming threshold

Lerner, E.
•
Düring, G.
•
Wyart, M.  
2012
Europhysics Letters - European Physical Society Letters (EPL)

We study the relationship between microscopic structure and viscosity in non-Brownian suspensions. We argue that the formation and opening of contacts between particles in flow effectively leads to a negative selection of the contacts carrying weak forces. We show that an analytically tractable model capturing this negative selection correctly reproduces scaling properties of flows near the jamming transition. In particular, we predict that i) the viscosity η diverges with the coordination number z as η(z cz) (3+θ)/(1+θ), ii) the operator which governs flow displays a low-frequency mode that controls the divergence of viscosity, at a frequency ω min(z cz) (3+θ)/(2+2θ), and iii) the distribution of forces displays a scale f* that vanishes near jamming as f*/f(z cz) 1/(1+θ) where θ characterizes the distribution of contact forces P(f)f θ at jamming, and where z c is the Maxwell threshold for rigidity. © Copyright EPLA, 2012.

  • Details
  • Metrics
Type
research article
DOI
10.1209/0295-5075/99/58003
Author(s)
Lerner, E.
Düring, G.
Wyart, M.  
Date Issued

2012

Publisher

IOP Publishing - EPL Association

Published in
Europhysics Letters - European Physical Society Letters (EPL)
Volume

99

Issue

5

Article Number

58003

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PCSL  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/130529
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés