Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Bimodal sound source tracking applied to road traffic monitoring
 
doctoral thesis

Bimodal sound source tracking applied to road traffic monitoring

Marmaroli, Patrick  
2013

The constant increase of road traffic requires closer and closer road network monitoring. The awareness of traffic characteristics in real time as well as its historical trends, facilitates decision-making for flow regulation, triggering relief operations, ensuring the motorists’ safety and contribute to optimize transport infrastructures. Today, the heterogeneity of the available data makes their processing complex and expensive (multiple sensors with different technologies, placed in different locations, with their own data format, unsynchronized, etc.). This leads metrologists to develop “smarter” monitoring devices, i.e. capable of providing all the necessary data synchronized from a single measurement point, with no impact on the flow road itself and ideally without complex installation. This work contributes to achieve such an objective through the development of a passive, compact, non-intrusive, acoustic-based system composed of a microphone array with a few number of elements placed on the roadside. The proposed signal processing techniques enable vehicle detection, the estimation of their speed as well as the estimation of their wheelbase length as they pass by. Sound sources emitted by tyre/road interactions are localized using generalized cross-correlation functions between sensor pairs. These successive correlation measurements are filtered using a sequential Monte Carlo method (particle filter) enabling, on one hand, the simultaneous tracking of multiple vehicles (that follow or pass each other) and on the other hand, a discrimination between useful sound sources and interfering noises. This document focuses on two-axle road vehicles only. The two tyre/road interactions (front and rear) observed by a microphone array on the roadside are modeled as two stochastic, zero-mean and uncorrelated processes, spatially disjoint by the wheelbase length. This bimodal sound source model defines a specific particle filter, called bimodal particle filter, which is presented here. Compared to the classical (unimodal) particle filter, a better robustness for speed estimation is achieved especially in cases of harsh observation. Moreover the proposed algorithm enables the wheelbase length estimation through purely passive acoustic measurement. An innovative microphone array design methodology, based on a mathematical expression of the observation and the tracking methodology itself is also presented. The developed algorithms are validated and assessed through in-situ measurements. Estimates provided by the acoustical signal processing are compared with standard radar measurements and confronted to video monitoring images. Although presented in a purely road-related applied context, we feel that the developed methodologies can be, at least partly, applied to rail, aerial, underwater or industrial metrology.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH5618.pdf

Access type

openaccess

Size

13.97 MB

Format

Adobe PDF

Checksum (MD5)

7926cfc114e28f250c7d96ae728ddd1a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés