Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks
 
research article

Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks

Schwander, Lukas
•
Ray, Deep
•
Hesthaven, Jan S.  
April 15, 2021
Journal Of Computational Physics

While a nonlinear viscosity is used widely to control oscillations when solving conservation laws using high-order elements based methods, such techniques are less straightforward to apply in global spectral methods since a local estimate of the solution regularity is generally required. In this work we demonstrate how to train and use a local artificial neural network to estimate the local solution regularity and demonstrate the efficiency of nonlinear artificial viscosity methods based on this, in the context of Fourier spectral methods. We compare with entropy viscosity techniques and illustrate the promise of the neural network based estimators when solving one- and two-dimensional conservation laws, including the Euler equations. (C) 2021 Elsevier Inc. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

spectral_viscosity.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

Copyright

Size

1.39 MB

Format

Adobe PDF

Checksum (MD5)

849d69556722d9606f4d27eae5a104ac

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés