Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Anandamide Hydrolysis in FAAH Reveals a Dual Strategy for Efficient Enzyme-Assisted Amide Bond Cleavage via Nitrogen Inversion
 
research article

Anandamide Hydrolysis in FAAH Reveals a Dual Strategy for Efficient Enzyme-Assisted Amide Bond Cleavage via Nitrogen Inversion

Palermo, Giulia  
•
Campomanes, Pablo  
•
Cavalli, Andrea
Show more
2015
The Journal of Physical Chemistry B

Herein, we combined classical molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations to unravel the whole catalytic cycle of fatty acid amide hydrolase (FAAH) in complex with anandamide, the main neurotransmitters involved in the control of pain. While microsecond MD simulations of FAAH in a realistic membrane/water environment provided a solid model for the reactant state of the enzymatic complex (Palermo et al. J. Chem. Theory Comput. 2013, 9, 12021213.), QM/MM simulations depict now a highly concerted two-step catalytic mechanism characterized by (1) acyl-enzyme formation after hydrolysis of the substrate amide bond and (2) deacylation reaction with restoration of the catalytic machinery. We found that a crucial event for anandamide hydrolysis is the inversion of the reactive nitrogen of the scissile amide bond, which occurs during the acylation rate-limiting step. We show that FAAH uses an exquisite catalytic strategy to induce amide bond distortion, reactive nitrogen inversion, and amide bond hydrolysis, promoting catalysis to completion. This new strategy is likely to be of general applicability to other amidases/peptidases that show similar catalytic site architectures, providing crucial insights for de novo enzyme design or drug discovery efforts.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Full Text.pdf

Access type

openaccess

Size

5.85 MB

Format

Adobe PDF

Checksum (MD5)

4877257dc31ee8bc019b99bcc769dcc6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés