Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Rare is Interesting: Connecting Spatio-Temporal Behavior Patterns with Subjective Image Appeal
 
conference paper

Rare is Interesting: Connecting Spatio-Temporal Behavior Patterns with Subjective Image Appeal

Yildirim, Gökhan  
•
Süsstrunk, Sabine  
2013
Proceedings of the 2nd ACM international workshop on Geotagging and its applications in multimedia
The 21st ACM International Conference on Multimedia

We analyze behavior patterns and photographic habits of the Nokia Mobile Data Challenge (NMDC) participants using GPS and timestamp data. We show that these patterns and habits can be used to estimate image appeal ratings of geotagged Flickr images. In order to do this, we summarize the behavior patterns of the individual NMDC participants into rare and repeating events using GPS coordinates and time stamps. We then retrieve, based on both the time and location information from these events, geotagged images and their "view" and "favorite" counts from Flickr. The appeal of an image is calculated as the ratio of favorite count to view count. We analyze how rare and repeating events are related to the appeal of the downloaded Flickr images and find that image appeal ratings are higher for events when the NMDC participants also took pictures and also higher for rare events. We thus design new event-based features to rate and rank the geotagged Flickr images. We measure the ranking performance of our algorithm by using the Flickr appeal ratings as ground truth. We show that our event-based features outperform visual-only features, which were previously used in image appeal ratings, and obtain a Spearman’s correlation coefficient of 0.47.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

geomm01-yildirim.pdf

Access type

openaccess

Size

1.28 MB

Format

Adobe PDF

Checksum (MD5)

211682b2d43bd5b5a6246f0451e089e3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés