Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sub‐asymptotic motivation for new conditional multivariate extreme models
 
research article

Sub‐asymptotic motivation for new conditional multivariate extreme models

Lugrin, Thomas
•
Tawn, Jonathan A.
•
Davison, Anthony  
August 30, 2021
Stat

Statistical models for extreme values are generally derived from non-degenerate probabilistic limits that can be used to approximate the distribution of events that exceed a selected high threshold. If convergence to the limit distribution is slow, then the approximation may describe observed extremes poorly, and bias can only be reduced by choosing a very high threshold at the cost of unacceptably large variance in any subsequent tail inference. An alternative is to use sub-asymptotic extremal models, which introduce more parameters but can provide better fits for lower thresholds. We consider this problem in the context of the Heffernan–Tawn conditional tail model for multivariate extremes, which has found wide use due to its flexible handling of dependence in high-dimensional applications. Recent extensions of this model appear to improve joint tail inference. We seek a sub-asymptotic justification for why these extensions work and show that they can improve convergence rates by an order of magnitude for certain copulas. We also propose a class of extensions of them that may have wider value for statistical inference in multivariate extremes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

sta4.401.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

796.56 KB

Format

Adobe PDF

Checksum (MD5)

482be7475bf9665c3c2707cc26b3ba8a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés