Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Review of iterative Fourier-transform algorithms for beam shaping applications
 
research article

Review of iterative Fourier-transform algorithms for beam shaping applications

Ripoll, Olivier
•
Kettunen, Ville
•
Herzig, Hans Peter  
2004
Optical Engineering

We present a comparison of some of the most used iterative Fourier transform algorithms (IFTA) for the design of continuous and multilevel diffractive optical elements (DOE). Our aim is to provide optical engineers with advice for choosing the most suited algorithm with respect to the task. We tackle mainly the beam-shaping and the beam-splitting problems, where the desired light distributions are almost binary. We compare four recent algorithms, together with the historical error-reduction and input-output methods. We conclude that three of these algorithms are interesting for continuous-phase kinoforms, and two, namely the three-step method proposed by Wyrowski and the over-compensation of Prongué, still perform well with multilevel- and binary-phase DOE. © 2004 Society of Photo-Optical Instrumentation Engineers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

OE_04 IFTA Review.pdf

Access type

openaccess

Size

118.78 KB

Format

Adobe PDF

Checksum (MD5)

b4e1431c4db177a722d135f2275c1071

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés