Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Seizure and redox rescue in a model of glucose transport deficiency
 
research article

Seizure and redox rescue in a model of glucose transport deficiency

Coggan, Jay S.
•
Shichkova, Polina  
•
Markram, Henry  
Show more
April 1, 2025
PLoS Computational Biology

Disruptions of energy supply to the brain are associated with many neurodegenerative pathologies and are difficult to study due to numerous interlinked metabolic pathways. We explored the effects of diminished energy supply on brain metabolism using a computational model of the neuro-glia-vasculature ensemble, in the form of a neuron, an astrocyte and local blood supply. As a case study, we investigated the glucose transporter type-1 deficiency syndrome (GLUT1-DS), a childhood affliction characterized by impaired glucose utilization and associated with phenotypes including seizures. Compared to neurons, astrocytes exhibited markedly higher metabolite concentration variabilities for all but a few redox species. This effect could signal a role for astrocytes in absorbing the shock of blood nutrient fluctuations. Redox balances were disrupted in GLUT1-DS with lower levels of reducing equivalent carriers NADH and ATP. The best non-glucose nutrient or pharmacotherapies for re-establishing redox normalcy involved lactate, the keto-diet (β-hydroxybutyrate), NAD and Q10 supplementation, suggesting a possible glucose sparing mechanism. GLUT1-DS seizures resulted from after-discharge neuronal firing caused by post-stimulus ATP reductions and impaired Na+/K+-ATPase, which can be rescued by restoring either normal glucose or by relatively small increases in neuronal ATP.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

journal.pcbi.1012959.pdf

Type

Main Document

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

CC BY

Size

1.94 MB

Format

Adobe PDF

Checksum (MD5)

85ed77ee9806e4f8a1143e162e38b3ab

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés