Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters
 
research article

MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters

Dueholm, Morten Kam Dahl
•
Andersen, Kasper Skytte
•
Korntved, Anne Kirstine C.
Show more
December 1, 2024
Nature Communications

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84–99% and 18–61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-024-49641-y.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.98 MB

Format

Adobe PDF

Checksum (MD5)

04a965e7c9dc06b91edeefda037564bb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés