Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wind sheltering of a lake by a tree canopy or bluff topography
 
Loading...
Thumbnail Image
research article

Wind sheltering of a lake by a tree canopy or bluff topography

Markfort, C.  
•
Pérez, A.L.S.
•
Thill, J.W.
Show more
2010
Water Resources Research

[1] A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment-based model predicts the wind-sheltering coefficient a priori, without calibration, and is useful for one-dimensional (1-D) lake hydrodynamic and water quality modeling. The model is derived from velocity measurements in a boundary layer wind tunnel, by investigating mean velocity profiles and surface shear stress development downwind of two canopies and a bluff. The wind tunnel experiments are validated with field measurements over an ice-covered lake. Both wind tunnel and field experiments show that reduced surface shear stress extends approximately 50 canopy heights downwind from the transition. The reduction in total shear force on the water surface is parameterized by a wind-sheltering coefficient that is related to the reduction of wind-affected lake area. While all measurements are made on solid surfaces, the wind-sheltering coefficient is shown to be applicable to the lake surface. Although several canopy characteristics, such as its height, aerodynamic roughness, and its porosity affect the transition of velocity profiles and surface shear stress onto a lake, a relationship based on canopy height alone provides a sufficiently realistic estimate of the wind-sheltering coefficient. The results compare well with wind-sheltering coefficients estimated by calibration of lake water temperature profile simulations for eight lakes.

  • Details
  • Metrics
Type
research article
DOI
10.1029/2009WR007759
Author(s)
Markfort, C.  
•
Pérez, A.L.S.
•
Thill, J.W.
•
Jaster, D.A.
•
Porté-Agel, F.  
•
Stefan, H.
Date Issued

2010

Publisher

American Geophysical Union

Published in
Water Resources Research
Volume

46

Issue

3

Article Number

W03530

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
WIRE  
Available on Infoscience
February 23, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/47648
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés