Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. On Decoupling Chemical Reaction Systems : Methods, Analysis and Applications
 
doctoral thesis

On Decoupling Chemical Reaction Systems : Methods, Analysis and Applications

Srinivasan, Sriniketh  
2017

Chemical reaction systems act as the basis to get the desired products from raw materials. An in-depth understanding of all the underlying rate processes is necessary for monitoring, control and optimization of chemical reaction systems. Traditional representation of a reaction system by means of the conservation equations (material and energy balances) leads to a set of highly coupled differential equations. These coupled ODEs provides overall contributions of all the underlying rate processes, and hence, it is difficult to analyse the effect of each rate process in a reaction system. In this dissertation, an alternative representation of reaction systems in terms of decoupled variables, namely, vessel extents is introduced. The advantages of using the representation in terms of the decoupled variables over the traditional representation are investigated for data reconciliation, model identification and parameter estimation, and state reconstruction and estimation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH7376.pdf

Access type

openaccess

Size

2.99 MB

Format

Adobe PDF

Checksum (MD5)

f4c8f44fd26a4047ef8210048c857d83

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés