Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Preparation and Characterization of Stable -Synuclein Lipoprotein Particles
 
research article

Preparation and Characterization of Stable -Synuclein Lipoprotein Particles

Eichmann, Cedric
•
Campioni, Silvia
•
Kowal, Julia
Show more
February 4, 2016
Journal of Biological Chemistry

Multiple neurodegenerative diseases are caused by the aggregation of the human -Synuclein (-Syn) protein. -Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that -Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of -Syn and anionic phospholipids. These particles are called -Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the -Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that -Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) -Syn lipoprotein particles have a defined size with a diameter of approximate to 23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of -Syn particles reveal a high-order protein-lipid entity composed of approximate to 8-10 -Syn molecules. The close resemblance in size between cross-linked in vitro-derived -Syn lipoprotein particles and a cross-linked species of endogenous -Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of -Syn lipoprotein nanoparticles.

  • Details
  • Metrics
Type
research article
DOI
10.1074/jbc.M115.707968
Author(s)
Eichmann, Cedric
Campioni, Silvia
Kowal, Julia
Maslennikov, Innokentiy
Gerez, Juan
Liu, Xiaoxia
Verasdonck, Joeri
Nespovitaya, Nadezhda
Choe, Senyon
Meier, Beat H.
Show more
Date Issued

2016-02-04

Publisher

American Society for Biochemistry & Molecular Biology (ASBMB)

Published in
Journal of Biological Chemistry
Volume

291

Issue

16

Start page

8516

End page

8527

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LBEM  
Available on Infoscience
February 13, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/165477
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés