Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Silicon spin qubits from laboratory to industry
 
review article

Silicon spin qubits from laboratory to industry

De Michielis, Marco
•
Ferraro, Elena
•
Prati, Enrico
Show more
September 7, 2023
Journal Of Physics D-Applied Physics

Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution if not sufficiently limited and corrected by quantum error correction codes thus avoiding quantum algorithm failures. In particular millions of highly-coherent qubits arranged in a two-dimensional array are required to implement the surface code, one of the most promising codes for quantum error correction. One of the most attractive technologies to fabricate such large number of almost identical high-quality devices is the well known metal-oxide-semiconductor technology. Silicon quantum processor manufacturing can leverage the technological developments achieved in the last 50 years in the semiconductor industry. Here, we review modeling, fabrication aspects and experimental figures of merit of qubits defined in the spin degree of freedom of charge carriers confined in quantum dots and donors in silicon devices along with classical electronics innovations for qubit control and readout. Furthermore, we discuss potential applications of the technology and finally we review the role of start-ups and companies in the silicon-based QC era.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

De_Michielis_2023_J._Phys._D__Appl._Phys._56_363001.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.89 MB

Format

Adobe PDF

Checksum (MD5)

c161ebb44d7f1dd660d455450ce0b421

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés