Coalescence and directed anisotropic growth of starch granule initials in subdomains of Arabidopsis thaliana chloroplasts
Starch is the major form of energy storage in plant cells and forms discrete, semi-crystalline granules within plastids. Here the authors use electron tomography and nanoSIMS to show that Arabidopsis starch granules initiate in stromal pockets between thylakoid membranes that coalesce before growing anisotropically.
Living cells orchestrate enzyme activities to produce myriads of biopolymers but cell-biological understanding of such processes is scarce. Starch, a plant biopolymer forming discrete, semi-crystalline granules within plastids, plays a central role in glucose storage, which is fundamental to life. Combining complementary imaging techniques and Arabidopsis genetics we reveal that, in chloroplasts, multiple starch granules initiate in stromal pockets between thylakoid membranes. These initials coalesce, then grow anisotropically to form lenticular granules. The major starch polymer, amylopectin, is synthesized at the granule surface, while the minor amylose component is deposited internally. The non-enzymatic domain of STARCH SYNTHASE 4, which controls the protein's localization, is required for anisotropic growth. These results present us with a conceptual framework for understanding the biosynthesis of this key nutrient.
s41467-021-27151-5.pdf
Publisher's Version
Published version
openaccess
CC BY
2.75 MB
Adobe PDF
780a1d0cdb532b6e672aa7f9f30ee44d