Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Efficient, self-contained handling of identity in Peer-to-Peer systems
 
research article

Efficient, self-contained handling of identity in Peer-to-Peer systems

Aberer, Karl  
•
Datta, Anwitaman  
•
Hauswirth, Manfred  
2004
IEEE Transactions on Knowledge and Data Engineering

Identification is an essential building block for many services in distributed information systems. The quality and purpose of identification may differ, but the basic underlying problem is always to bind a set of attributes to an identifier in a unique and deterministic way. Name/directory services, such as DNS, X.500, or UDDI, are a well-established concept to address this problem in distributed information systems. However, none of these services addresses the specific requirements of peer-to-peer systems with respect to dynamism, decentralization, and maintenance. We propose the implementation of directories using a structured peer-topeer overlay network and apply this approach to support self-contained maintenance of routing tables with dynamic IP addresses in structured P2P systems. Thus, we can keep routing tables intact without affecting the organization of the overlay networks, making it logically independent of the underlying network infrastructure. Even though the directory is self-referential, since it uses its own service to maintain itself, we show that it is robust due to a self-healing capability. For security, we apply a combination of PGP-like public key distribution and a quorum-based query scheme. We describe the algorithm as implemented in the P-Grid P2P lookup system (http:// www.p-grid.org/) and give a detailed analysis and simulation results demonstrating the efficiency and robustness of our approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TKDE2004.pdf

Access type

openaccess

Size

595.63 KB

Format

Adobe PDF

Checksum (MD5)

6c4d69b03944ab3c3dcdc238936c8228

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés