Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Functional diversity of reductive dehalogenases in a bacterial consortium degrading chloroethenes
 
conference poster not in proceedings

Functional diversity of reductive dehalogenases in a bacterial consortium degrading chloroethenes

Buttet, Géraldine Florence  
•
Holliger, Christof  
•
Maillard, Julien  
2012
The 6th Swiss Molecular Microbiology Meeting (SWIMM 2012)

Several enrichment cultures were investigated in our laboratory for the bioremediation potential of tetrachloroethene (PCE). The underlying process, organohalide respiration (OHR), is based on bacterial anaerobic respiration in which the chlorinated compounds are used as electron acceptors. The key enzyme in OHR is the reductive dehalogenase (RdhA). SL2-PCEb, an enrichment culture stepwise dechlorinating PCE to cis-dichloroethene (cis-DCE), was shown to be dominated by Sulfurospirillum spp. By applying different frequencies of culture transfer, two additional subcultures were obtained showing different degradation properties. The aim of this work was to obtain a better understanding of the functional diversity of reductive dehalogenases (rdhA genes) in the SL2 consortia and their dynamic during PCE dechlorination. An rdhA-specific T-RFLP method was developed here to amplify all rdhA gene types present in Sulfurospirillum, and to distinguish them across the dechlorination patterns. The analysis of subcultures SL2-PCEc and SL2-TCE revealed that the former only dechlorinated PCE to trichloroethene (TCE), while the latter had kept the potential to dechlorinate PCE to cis-DCE. Three rdhA genes were identified in SL2 subcultures, two of them similar to Type-1 rdhA genes (pceA of S. multivorans and S. halorespirans), and a third one to Type-2. The T-RFLP analysis of the original culture (SL2-PCEb) showed a clear interplay of both Type-1 rdhA genes, highlighting a distinct role for each of them in the stepwise dechlorination of PCE. Biochemical characterization of crude extracts from the subcultures unambiguously confirmed these observations. Moreover, a new RdhA enzyme was discovered with a limited substrate range.

  • Details
  • Metrics
Type
conference poster not in proceedings
Author(s)
Buttet, Géraldine Florence  
Holliger, Christof  
Maillard, Julien  
Date Issued

2012

Written at

EPFL

EPFL units
LBE  
Event nameEvent placeEvent date
The 6th Swiss Molecular Microbiology Meeting (SWIMM 2012)

Villars-sur-Ollon

September 6th - 7th

Available on Infoscience
October 5, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/85997
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés