Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Inversing the actuation cycle of dielectric elastomer actuators for a facial prosthesis
 
conference paper

Inversing the actuation cycle of dielectric elastomer actuators for a facial prosthesis

Konstantinidi, Stefania Maria Aliki  
•
De Menech, Quentin Philippe Mario  
•
Martinez, Thomas Guillaume  
Show more
May 9, 2024
SPIE Smart Structures + Nondestructive Evaluation 2024

Dielectric Elastomer Actuators (DEAs) are a type of smart material described as compliant capacitors. They show impressive performances as soft actuators, such as a high strain and fast response. Nonetheless, replicating natural muscle function with DEAs has posed a challenge since DEAs exhibit in-plane expansion, whereas natural muscles contract when stimulated. This publication aims to investigate the use of a normal configuration of DEAs to obtain a contractile movement for post paralysis facial reanimation, by inversing its actuation cycle: the voltage applied on the DEA will constantly be on to keep the DEA stretched and will be off when a contraction movement is wanted, for instance for smiling. Several difficulties linked to this solution need to be considered, such as the self-discharge rate of the DEA, linked to the leakage current flowing through the dielectric when a voltage is applied. The leakage current corresponds to a leakage of charge between the two electrodes and is suggested to influence the self-discharge rate but also the dielectric breakdown and the performance of the actuator. As DEAs present a fast self-discharging rate, the charging frequency of DEAs should be determined to avoid unwanted displacement leading to visible facial spasms. DEAs and their self-discharge rate are characterized, to determine the chosen charging frequency and duty cycle for facial reanimation. The goal is to have the minimum discharge between two actuation cycles. A discharge model was proposed and validated experimentally, allowing to determine a chosen frequency of 2 Hz and 50% duty cycle, leading to a discharge of less than 3% between two actuation cycles, and thus allows to consume 1.5% less energy over each cycle compared to a continuous actuation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Inversing the actuation cycle of dielectric elastomer actuators for a facial prosthesis.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

License Condition

copyright

Size

699.27 KB

Format

Adobe PDF

Checksum (MD5)

d8df4ae3b5a0b48b5ebd14e61e0e54e5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés