Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report :Convergence analysis of Padé approximations for Helmholtz frequency response problems
 
working paper

MATHICSE Technical Report :Convergence analysis of Padé approximations for Helmholtz frequency response problems

Bonizzoni, Francesca  
•
Nobile, Fabio  
•
Perugia, Ilaria
July 19, 2016

The present work concerns the approximation of the solution map S associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution of the Helmholtz equation. We introduce a least squares rational Padé-type approximation technique applicable to any meromorphic Hilbert space-valued univariate map, and we prove the uniform convergence of the Padé approximation error on any compact subset of the interval of interest that excludes any pole. This general result is then applied to the Helmholtz solution map S, which is proven to be meromorphic in C, with a pole of order one in every (single or multiple) eigenvalue of the Laplace operator with the considered boundary conditions. Numerical tests are provided that confirm the theoretical upper bound on the Padé approximation error for the Helmholtz solution map.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

24.2016_FB-FN-IP.pdf

Access type

openaccess

Size

724.53 KB

Format

Adobe PDF

Checksum (MD5)

dd7f09af0e54b7f785a2031dcd0e4d4e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés