Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hydrogen: the future energy carrier
 
research article

Hydrogen: the future energy carrier

Zuettel, Andreas  
•
Remhof, Arndt
•
Borgschulte, Andreas
Show more
2010
Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences

Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat. © 2010 The Royal Society.

  • Details
  • Metrics
Type
research article
DOI
10.1098/rsta.2010.0113
Web of Science ID

WOS:000278942500008

Author(s)
Zuettel, Andreas  
Remhof, Arndt
Borgschulte, Andreas
Friedrichs, Oliver
Date Issued

2010

Published in
Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences
Volume

368

Issue

1923

Start page

3329

End page

3342

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMER  
Available on Infoscience
March 3, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/112040
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés