Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates: Energy Transfer Mechanisms in the SmIII and YbIII Molecular Edifices
 
research article

Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates: Energy Transfer Mechanisms in the SmIII and YbIII Molecular Edifices

Goncalves e Silva, Fabiana R.
•
Malta, Oscar L.
•
Reinhard, Christine
Show more
2002
The Journal of Physical Chemistry A

The photophysical properties of the triple-stranded dimetallic helicates [Ln2(LC−2H)3]·H2O (Ln = Nd, Sm, Dy, Yb) are determined in water and D2O solutions, and energy transfer processes are modeled for SmIII. The luminescence of NdIII, SmIII, and YbIII is sensitized by (LC−2H)2-, but the energy transfer from the ligand to the LnIII ions is not complete, resulting in residual ligand emission. The luminescence of the NdIII helicate is very weak due to nonradiative de-excitation processes. On the other hand, the YbIII and SmIII helicates exhibit fair quantum yields, 1.8% and 1.1% in deuterated water, respectively. The energy transfer rates between (LC−2H)2- and SmIII levels are calculated by direct and exchange Coulomb interaction models. This theoretical modeling coupled to numerical solutions of the rate equations leads to an estimate of the emission quantum yields in H2O and D2O, which compares favorably with experimental data. The main component of the ligand-to-metal energy transfer (97.5%) goes through a 3ππ* → 5G5/2(1) path, and the operative mechanism is of the exchange type. For the YbIII helicate, minor effects of oxygen on the sensitization of YbIII and nanosecond time-resolved spectroscopy point to the energy transfer mechanism being consistent with a recently proposed pathway involving fast electron transfer and YbII. No up-conversion process could be identified. Ligand-field splitting of the 2F5/2 (3E1/2 + E3/2) and 2F7/2 (2E1/2 + E3/2) levels of YbIII is consistent with D3 symmetry.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JPC-02-Sm-Hel-FG.pdf

Access type

openaccess

Size

100.79 KB

Format

Adobe PDF

Checksum (MD5)

f1ce6ef18a6a5673729f68ae57e02ae8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés