Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Pre-movement sensorimotor oscillations shape the sense of agency by gating cortical connectivity
 
research article

Pre-movement sensorimotor oscillations shape the sense of agency by gating cortical connectivity

Bertoni, Tommaso
•
Noel, Jean Paul
•
Bockbrader, Marcia
Show more
December 1, 2025
Nature Communications

Our sense of agency, the subjective experience of controlling our actions, is a crucial component of self-awareness and motor control. It is thought to originate from the comparison between intentions and actions across broad cortical networks. However, the underlying neural mechanisms are still not fully understood. We hypothesized that oscillations in the theta-alpha range, thought to orchestrate long-range neural connectivity, may mediate sensorimotor comparisons. To test this, we manipulated the relation between intentions and actions in a tetraplegic user of a brain machine interface (BMI), decoding primary motor cortex (M1) activity to restore hand functionality. We found that the pre-movement phase of low-alpha oscillations in M1 predicted the participant’s agency judgements. Further, using EEG-BMI in healthy participants, we found that pre-movement alpha oscillations in M1 and supplementary motor area (SMA) correlated with agency ratings, and with changes in their functional connectivity with parietal, temporal and prefrontal areas. These findings argue for phase-driven gating as a key mechanism for sensorimotor integration and sense of agency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-025-58683-9.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.98 MB

Format

Adobe PDF

Checksum (MD5)

c77a763707c871b2913771910ac0faae

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés