Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Global approach to the spectral problem of microinstabilities in tokamak plasmas using a gyrokinetic model
 
research article

Global approach to the spectral problem of microinstabilities in tokamak plasmas using a gyrokinetic model

Brunner, S.  
•
Fivaz, M.
•
Tran, T. M.  
Show more
1998
Physics of Plasmas

A solution to the full two-dimensional eigenvalue problem of electrostatic microinstabilities in a tokamak plasma is presented in the framework of gyrokinetic theory. The approach is the generalization of methods previously developed for a cylindrical system [S. Brunner and J. Vaclavik, Phys. Plasmas 5, 365 (1998)]. By solving the spectral problem in a special Fourier space adapted to the curved geometry, orbit width as well as Larmor radius can be kept to all orders. For a first numerical implementation, a large aspect ratio plasma with circular concentric magnetic surfaces is considered. A root finding algorithm for identifying the eigenfrequencies, based on a higher order Nyquist method, enables straightforward implementation on a parallel computer. Illustrative results for ion temperature gradient-related instabilities are presented. These include scaling studies of the radial width, and toroidicity and magnetic shear scans, as well as the effects of nonadiabatic trapped electron dynamics. (C) 1998 American Institute of Physics. [S1070-664X(98)00311-5].

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.873113
Author(s)
Brunner, S.  
Fivaz, M.
Tran, T. M.  
Vaclavik, J.  
Date Issued

1998

Published in
Physics of Plasmas
Volume

5

Issue

11

Start page

3929

End page

3949

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21541
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés