Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy
 
research article

Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy

Mewes, Lars  
•
Wang, Mao
•
Ingle, Rebecca A.  
Show more
September 11, 2020
Communications Physics

Coupling matter excitations to electromagnetic modes inside nano-scale optical resonators leads to the formation of hybrid light-matter states, so-called polaritons, allowing the controlled manipulation of material properties. Here, we investigate the photo-induced dynamics of a prototypical strongly-coupled molecular exciton-microcavity system using broadband two-dimensional Fourier transform spectroscopy and unravel the mechanistic details of its ultrafast photo-induced dynamics. We find evidence for a direct energy relaxation pathway from the upper to the lower polariton state that initially bypasses the excitonic manifold of states, which is often assumed to act as an intermediate energy reservoir, under certain experimental conditions. This observation provides new insight into polariton photophysics and could potentially aid the development of applications that rely on controlling the energy relaxation mechanism, such as in solar energy harvesting, manipulating chemical reactivity, the creation of Bose-Einstein condensates and quantum computing.

Recent spectroscopic studies have elucidated light-matter interactions in exciton-polaritons at room temperature, yet their precise excited-state dynamics remain unclear. Here, broadband 2D Fourier transform spectroscopy reveals the relaxation between polaritonic states and the role of dark states.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42005-020-00424-z.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.7 MB

Format

Adobe PDF

Checksum (MD5)

d139df8b45df3370326e86ee68376f97

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés