Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The stability of a rising droplet: an inertialess non-modal growth mechanism
 
research article

The stability of a rising droplet: an inertialess non-modal growth mechanism

Gallino, Giacomo  
•
Zhu, Lailai  
•
Gallaire, Francois  
2016
Journal of Fluid Mechanics

Prior modal stability analysis (Kojima et al., Phys. Fluids, vol. 27, 1984, pp. 19-32) predicted that a rising or sedimenting droplet in a viscous fluid is stable in the presence of surface tension no matter how small, in contrast to experimental and numerical results. By performing a non-modal stability analysis, we demonstrate the potential for transient growth of the interfacial energy of a rising droplet in the limit of inertialess Stokes equations. The predicted critical capillary numbers for transient growth agree well with those for unstable shape evolution of droplets found in the direct numerical simulations of Koh & Leal (Phys. Fluids, vol. 1, 1989, pp. 1309-1313). Boundary integral simulations are used to delineate the critical amplitude of the most destabilizing perturbations. The critical amplitude is negatively correlated with the linear optimal energy growth, implying that the transient growth is responsible for reducing the necessary perturbation amplitude required to escape the basin of attraction of the spherical solution.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1508.00006.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

Size

1.3 MB

Format

Adobe PDF

Checksum (MD5)

20a480962a7abddcedf1eedcd3fdf485

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés