Scalable and RISC-V Programmable Near-Memory Computing Architectures for Edge Nodes
The widespread adoption of data-centric algorithms, particularly Artificial Intelligence (AI) and Machine Learning (ML), has exposed the limitations of centralized processing infrastructures, driving a shift towards edge computing. This necessitates stringent constraints on energy efficiency, which traditional von Neumann architectures struggle to meet. The Compute-In-Memory (CIM) paradigm has emerged as a better candidate due to its efficient exploitation of the available memory bandwidth. However, existing CIM solutions require a high implementation effort and lack flexibility from a software integration standpoint. This work proposes a novel, software-friendly, general-purpose, and low-integration-effort Near-Memory Computing (NMC) approach, paving the way for the adoption of CIMbased systems in the next generation of edge computing nodes. Two architectural variants, NM-Caesar and NM-Carus, are proposed and characterized to target different trade-offs in area efficiency, performance, and flexibility, covering a wide range of embedded microcontrollers. Post-layout simulations show up to 28.0 × and 53.9 × lower execution time and 25.0 × and 35.6 × higher energy efficiency at system level, respectively, compared to the execution of the same tasks on a state-of-the-art RISC-V CPU (RV32IMC). NM-Carus achieves a peak energy efficiency of 306.7 GOPS/W in 8-bit matrix multiplications, surpassing recent state-of-the-art in-and near-memory circuits.
near-memory-tetc.pdf
Main Document
Accepted version
openaccess
N/A
5.32 MB
Adobe PDF
f09094cd0b538fe62d8d22cbc2eac7c1