The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets
Compared to minimization, the min-max optimization in machine learning applications is considerably more convoluted because of the existence of cycles and similar phenomena. Such oscillatory behaviors are well-understood in the convex-concave regime, and many algorithms are known to overcome them. In this paper, we go beyond this basic setting and characterize the convergence properties of many popular methods in solving non-convex/non-concave problems. In particular, we show that a wide class of state-of-the-art schemes and heuristics may converge with arbitrarily high probability to attractors that are in no way min-max optimal or even stationary. Our work thus points out a potential pitfall among many existing theoretical frameworks, and we corroborate our theoretical claims by explicitly showcasing spurious attractors in simple two-dimensional problems.
Main.pdf
openaccess
3.48 MB
Adobe PDF
7dd62b692c45e8206746d9f787df1df6