Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The double description method for the approximation of explicit MPC control laws
 
conference paper

The double description method for the approximation of explicit MPC control laws

Jones, Colin  
•
Morari, Manfred
2008
Proceedings of the 47th IEEE Conference on Decision and Control
47th IEEE Conference on Decision and Control

A standard model predictive controller (MPC) can be written as a parametric optimization problem whose solution is a piecewise affine (PWA) map from the measured state to the optimal control input. The primary limitation of this optimal `explicit solution¿ is that the complexity can grow quickly with problem size, and so in this paper we seek to compute approximate explicit control laws that can trade-off complexity for approximation error. This computation is accomplished in a two-phase process: First, inner and outer polyhedral approximations of the the convex cost function of the parametric problem are computed with an algorithm based on an extension to the classic double-description method; a convex hull approach. The proposed method has two main advantages from a control point of view: it is an incremental approach, meaning that an approximation of any specified complexity can be produced and it operates on implicitly-defined convex sets, meaning that the optimal solution of the parametric problem is not required. In the second phase of the algorithm, a feasible approximate control law is computed that has the cost function derived in the first phase. For this purpose, a new interpolation method is introduced based on recent work on barycentric interpolation. The resulting control law is continuous, although non-linear and defined over a non-simplical polytopic partition of the state space. The non-simplical nature of the partition generates significantly simpler approximate control laws than current competing methods, as demonstrated on computational examples.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

publication_3103.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

119.52 KB

Format

Adobe PDF

Checksum (MD5)

b652464ddd43b8252c4b3977b0f4ec41

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés