Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Learning to Boost the Performance of Stable Nonlinear Systems
 
research article

Learning to Boost the Performance of Stable Nonlinear Systems

Furieri, Luca  
•
Galimberti, Clara Lucia  
•
Ferrari-Trecate, Giancarlo  
2024
IEEE Open Journal of Control Systems

The growing scale and complexity of safety-critical control systems underscore the need to evolve current control architectures aiming for the unparalleled performances achievable through state-of-the-art optimization and machine learning algorithms. However, maintaining closed-loop stability while boosting the performance of nonlinear control systems using data-driven and deep-learning approaches stands as an important unsolved challenge. In this paper, we tackle the performance-boosting problem with closed-loop stability guarantees. Specifically, we establish a synergy between the Internal Model Control (IMC) principle for nonlinear systems and state-of-the-art unconstrained optimization approaches for learning stable dynamics. Our methods enable learning over specific classes of deep neural network performance-boosting controllers for stable nonlinear systems; crucially, we guarantee Lp closed-loop stability even if optimization is halted prematurely. When the ground-truth dynamics are uncertain, we learn over robustly stabilizing control policies. Our robustness result is tight, in the sense that all stabilizing policies are recovered as the Lp-gain of the model mismatch operator is reduced to zero. We discuss the implementation details of the proposed control schemes, including distributed ones, along with the corresponding optimization procedures, demonstrating the potential of freely shaping the cost functions through several numerical experiments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1109_ojcsys.2024.3441768.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

7.01 MB

Format

Adobe PDF

Checksum (MD5)

6e47e900916d55746648ab2f97c4c47a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés