Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride
We propose monolayer epitaxial graphene and hexagonal boron nitride (h-BN) as ultimate thickness covalent spacers for magnetoresistive junctions. Using a first-principles approach, we investigate the structural, magnetic, and spin transport properties of such junctions based on structurally well-defined interfaces with (111) fcc or (0001) hcp ferromagnetic transition metals. We find low resistance area products, strong exchange couplings across the interface, and magnetoresistance ratios exceeding 100% for certain chemical compositions. These properties can be fine tuned, making the proposed junctions attractive for nanoscale spintronics applications.
WOS:000268617800115
2009
80
3
035408
REVIEWED