Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Molecular dynamics in electronically excited states using time-dependent density functional theory
 
research article

Molecular dynamics in electronically excited states using time-dependent density functional theory

Tavernelli, Ivano  
•
Roehrig, Ute F.  
•
Rothlisberger, Ursula  
2005
Molecular Physics

The authors describe two different implementations of time-dependent d. functional theory (TDDFT) for use in excited state mol. dynamics simulations. One is based on the linear response formulation (LR-TDDFT), whereas the other uses a time propagation scheme for the electronic wave functions (P-TDDFT). Photoinduced cis-trans isomerization of C=C, C=N and N=N double bonds is investigated in three model compds., namely the 2,4-pentadiene-1-iminium cation (PSB), formaldimine and diimide. For formaldimine and diimide, the results obtained with both schemes are in agreement with exptl. data and previously reported theor. results. Mol. dynamics simulations yield new insights into the relaxation pathways in the excited state. For PSB, which is a model system for the retinal protonated Schiff base involved in the visual process, the forces computed from the LR-TDDFT S1 surface lead to an increased bond length alternation and, consequently, to single bond rotation. On the contrary, P-TDDFT dynamics lead to a decreased bond length alternation, in agreement with CASPT2 and restricted open-shell Kohn-Sham (ROKS) calcns. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1080/00268970512331339378
Web of Science ID

WOS:000228583300023

Author(s)
Tavernelli, Ivano  
Roehrig, Ute F.  
Rothlisberger, Ursula  
Date Issued

2005

Published in
Molecular Physics
Volume

103

Issue

6-8

Start page

963

End page

981

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCBC  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226233
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés