Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sampling and Reconstruction of Bandlimited Signals with Multi-Channel Time Encoding
 
research article

Sampling and Reconstruction of Bandlimited Signals with Multi-Channel Time Encoding

Adam, Karen  
•
Scholefield, Adam
•
Vetterli, Martin
2020
IEEE Transactions on Signal Processing

Sampling is classically performed by recording the amplitude of the input at given time instants; however, sampling and reconstructing a signal using multiple devices in parallel becomes a more difficult problem to solve when the devices have an unknown shift in their clocks. Alternatively, one can record the times at which a signal (or its integral) crosses given thresholds. This can model integrate-and-fire neurons, for example, and has been studied by Lazar and Tóth under the name of "Time Encoding Machines". This sampling method is closer to what is found in nature. In this paper, we show that, when using time encoding machines, reconstruction from multiple channels has a more intuitive solution, and does not require the knowledge of the shifts between machines. We show that, if single-channel time encoding can sample and perfectly reconstruct a 2Ω-bandlimited signal, then M-channel time encoding can sample and perfectly reconstruct a signal with M times the bandwidth. Furthermore, we present an algorithm to perform this reconstruction and prove that it converges to the correct unique solution, in the noiseless case, without knowledge of the relative shifts between the machines. This is quite unlike classical multi-channel sampling, where unknown shifts between sampling devices pose a problem for perfect reconstruction.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Main article.pdf

Access type

openaccess

Size

1.33 MB

Format

Adobe PDF

Checksum (MD5)

193ee60e6e7bf7d77b779e3f62dec6bc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés