Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamical phase transitions in graph cellular automata
 
research article

Dynamical phase transitions in graph cellular automata

Behrens, Freya  
•
Hudcová, Barbora
•
Zdeborová, Lenka  
April 18, 2024
Physical Review E

Discrete dynamical systems can exhibit complex behavior from the iterative application of straightforward local rules. A famous class of examples comes from cellular automata whose global dynamics are notoriously challenging to analyze. To address this, we relax the regular connectivity grid of cellular automata to a random graph, which gives the class of graph cellular automata. Using the dynamical cavity method and its backtracking version, we show that this relaxation allows us to derive asymptotically exact analytical results on the global dynamics of these systems on sparse random graphs. Concretely, we showcase the results on a specific subclass of graph cellular automata with "conforming nonconformist" update rules, which exhibit dynamics akin to opinion formation. Such rules update a node's state according to the majority within their own neighborhood. In cases where the majority leads only by a small margin over the minority, nodes may exhibit nonconformist behavior. Instead of following the majority, they either maintain their own state, switch it, or follow the minority. For configurations with different initial biases towards one state we identify sharp dynamical phase transitions in terms of the convergence speed and attractor types. From the perspective of opinion dynamics this answers when consensus will emerge and when two opinions coexist almost indefinitely.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevE.109.044312_Dynamical phase transitions in graph cellular automata.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

N/A

Size

3.43 MB

Format

Adobe PDF

Checksum (MD5)

6126e04ac6e8cea503247d41ec8ccb49

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés