Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Datasets and Code
  4. Representational similarity modulates neural and behavioral signatures of novelty: Model simulations
 
dataset

Representational similarity modulates neural and behavioral signatures of novelty: Model simulations

Becker, Sophia  
•
Modirshanechi, Alireza  
•
Gerstner, Wulfram  
2026
Zenodo

Here, we provide model simulation data accompanying the analysis of neural and behavioral data in our article 'Representational similarity modulates neural and behavioral signatures of novelty'. This data set contains

(i) simulations of similarity-based novelty models for fitting of V1 novelty responses: grid_search_results.zip

(ii) simulations for parameter robustness analysis of similarity-based novelty, fit to V1 novelty responses: gridsearch_robustness_width.zip

(iii) simulations of novelty-RL agents with similarity-based novelty, fit to mouse exploration behavior: ppc.zip

The code used to generate the simulated data as well as further description of the data set are available at: https://github.com/sobecker/sim_nov

The link to the related preprint is available at: https://www.biorxiv.org/content/10.1101/2024.05.01.592002v2.abstract

  • Details
  • Metrics
Type
dataset
DOI
10.5281/zenodo.18117791
Author(s)
Becker, Sophia  

EPFL

Modirshanechi, Alireza  

EPFL

Gerstner, Wulfram  

EPFL

Date Issued

2026

Version

v1.0

Publisher

Zenodo

License

cc-by-4.0

Additional link

Code Repository URL

https://github.com/sobecker/sim_nov/
EPFL units
LCN1  
FunderFunding(s)Grant NO

Swiss National Science Foundation

Synaptic plasticity in system models

184615

Swiss National Science Foundation

Synaptic plasticity in system models

207426

Swiss National Science Foundation

200021_236436

RelationRelated workURL/DOI

IsSupplementTo

Representational similarity modulates neural and behavioral signatures of novelty

https://infoscience.epfl.ch/handle/20.500.14299/257651

IsVersionOf

https://doi.org/10.5281/zenodo.18117790

IsCompiledBy

Code base: Similarity-based novelty

https://github.com/sobecker/sim_nov/
Available on Infoscience
January 7, 2026
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/257650
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés