Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Local relaxation of residual stress in high-strength steel welded joints treated by HFMI
 
research article

Local relaxation of residual stress in high-strength steel welded joints treated by HFMI

Ono, Yuki
•
Remes, Heikki
•
Kinoshita, Koji
Show more
2024
Welding in the World

This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in highstrength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s40194-024-01789-3.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.9 MB

Format

Adobe PDF

Checksum (MD5)

8dbcdba09102905125b534abf776fa6e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés