Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. From bulk descriptions to emergent interfaces: Connecting the Ginzburg-Landau and elastic-line models
 
research article

From bulk descriptions to emergent interfaces: Connecting the Ginzburg-Landau and elastic-line models

Caballero, Nirvana
•
Agoritsas, Elisabeth  
•
Lecomte, Vivien
Show more
September 24, 2020
Physical Review B

Controlling interfaces is highly relevant from a technological point of view. However, their rich and complex behavior makes them very difficult to describe theoretically, and hence to predict. In this work, we establish a procedure to connect two levels of descriptions of interfaces: for a bulk description, we consider a two-dimensional Ginzburg-Landau model evolving with a Langevin equation, and boundary conditions imposing the formation of a rectilinear domain wall. At this level of description no assumptions need to be done over the interface, but analytical calculations are very difficult to handle, especially for disordered systems. On a different level of description, we consider a one-dimensional elastic line model evolving according to the Edwards-Wilkinson equation, which only allows one to study continuous and univalued interfaces, but which was up to now one of the most successful tools to treat interfaces analytically. To establish the connection between the bulk description and the interface description, we propose a simple method which has the advantage to be readily applicable to disordered systems. We probe the connection by numerical simulations at both levels for clean and disordered systems, and our simulations, in addition to making contact with experiments, allow us to test and provide insight to develop new analytical approaches to treat interfaces.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevB_102_104204.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.79 MB

Format

Adobe PDF

Checksum (MD5)

1feb727e4001fd82b7fff9e031552887

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés