Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Kernel Modeling Super-Resolution on Real Low-Resolution Images
 
Loading...
Thumbnail Image
conference paper

Kernel Modeling Super-Resolution on Real Low-Resolution Images

Zhou, Ruofan  
•
Süsstrunk, Sabine  
2019
2019 Ieee/Cvf International Conference On Computer Vision (Iccv 2019)
IEEE/CVF International Conference on Computer Vision (ICCV)

Deep convolutional neural networks (CNNs), trained on corresponding pairs of high- and low-resolution images, achieve state-of-the-art performance in single-image super- resolution and surpass previous signal-processing based approaches. However, their performance is limited when applied to real photographs. The reason lies in their train- ing data: low-resolution (LR) images are obtained by bicu- bic interpolation of the corresponding high-resolution (HR) images. The applied convolution kernel significantly differs from real-world camera-blur. Consequently, while current CNNs well super-resolve bicubic-downsampled LR images, they often fail on camera-captured LR images. To improve generalization and robustness of deep super- resolution CNNs on real photographs, we present a ker- nel modeling super-resolution network (KMSR) that incor- porates blur-kernel modeling in the training. Our pro- posed KMSR consists of two stages: we first build a pool of realistic blur-kernels with a generative adversarial net- work (GAN) and then we train a super-resolution network with HR and corresponding LR images constructed with the generated kernels. Our extensive experimental vali- dations demonstrate the effectiveness of our single-image super-resolution approach on photographs with unknown blur-kernels.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICCV_blindSR.pdf

Access type

openaccess

Size

9.46 MB

Format

Adobe PDF

Checksum (MD5)

28d61d4ce3c3b1adaa0558dceda1c185

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés