Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. DEMO physics challenges beyond ITER
 
research article

DEMO physics challenges beyond ITER

Siccinio, M.
•
Biel, W.
•
Cavedon, M.
Show more
July 1, 2020
Fusion Engineering And Design

For electricity producing tokamak fusion reactors like EU-DEMO, it is prudent to choose a plasma scenario close to the ITER baseline, where the largest amount of experimental evidence is available. Nevertheless, there are some aspects in which ITER and EU-DEMO have to differ, as the simple exercise of up-scaling from ITER to a larger device is constrained both by physical nonlinearities and by technological limits. In this work, relevant differences between ITER and the current EU-DEMO baseline in terms of plasma scenario are discussed. Firstly, EU-DEMO is assumed to operate with a very large amount of radiative power originating both from the scrape-off layer and, markedly, from the core. This radiation level is obtained by means of seeded impurities, whose presence significantly affects many aspects of the scenario itself, especially in terms of transient control. Secondly, because of the need of breeding tritium, the EU-DEMO wall is less robust than the ITER one. This implies that every off-normal interruption of the plasma discharge, for example in presence of a divertor reattachment, cannot rely on fast-shutdown procedures finally triggering a loss of plasma control at high current, but other strategies need to be developed. Thirdly, the ITER method for the control of the so-called sawteeth (ST) has been shown to be too expensive in terms of auxiliary power requirements, thus other solutions have to be explored. Finally, the problem of actively mitigating, or suppressing, the Edge Localised Modes (ELMs) has recently increased the interest on naturally ELM-free regimes (like QH-mode, I-mode, and also negative triangularity) for EU-DEMO, thus increasing the needs for ELM mitigation or suppression with respect to the approach adopted in ITER.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Siccinio_ISFNT2019_FED_FirstRev1_black.pdf

Access type

openaccess

Size

452.02 KB

Format

Adobe PDF

Checksum (MD5)

cfa83d2642828cd74491e8f4ce604308

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés