Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions
 
research article

Experimental investigation of added mass effects on a hydrofoil under cavitation conditions

De La Torre, O.
•
Escaler, X.
•
Egusquiza, E.
Show more
2013
Journal Of Fluids And Structures

The influence of leading edge sheet cavitation and supercavitation on the added mass effects experienced by a 2-D NACA0009 truncated hydrofoil has been experimentally investigated in a hydrodynamic tunnel. A non-intrusive excitation and measuring system based on piezoelectric patches mounted on the hydrofoil surface was used to determine the natural frequencies of the fluid-structure system. The appropriate hydrodynamic conditions were selected to generate a range of stable partial cavities of various sizes and also to minimize the effects of other sources of flow noise and vibrations. The main tests were performed for different sigma values under a constant flow velocity of 14 m/s and for incident angles of both 10 and 2. Additionally, a series of experiments in which the hydrofoil was submerged in air, partially and completely submerged in still water and without cavitation at 7 and 14 m/s were also performed. The maximum added mass effect occurs with still water. When cavitation appears, the added mass decreases because the cavity length is increased, and the added mass is minimum for supercavitation. A linear correlation is found between the added mass coefficients and the entrained mass that accounts for the mean density of the cavity, its dimensions and its location relative to the specific mode shape deformation. (C) 2013 Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0889974613000273-main.pdf

Access type

openaccess

Size

1.63 MB

Format

Adobe PDF

Checksum (MD5)

58e5804cf729cbb38497397ecc7982dd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés