Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices
 
conference paper

Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices

Rangan, Sundeep
•
Schniter, Philip
•
Riegler, Erwin
Show more
2016
Ieee Transactions On Information Theory
IEEE International Symposium on Information Theory, (ISIT)

The estimation of a random vector with independent components passed through a linear transform followed by a componentwise (possibly nonlinear) output map arises in a range of applications. Approximate message passing (AMP) methods, based on Gaussian approximations of loopy belief propagation, have recently attracted considerable attention for such problems. For large random transforms, these methods exhibit fast convergence and admit precise analytic characterizations with testable conditions for optimality, even for certain non-convex problem instances. However, the behavior of AMP under general transforms is not fully understood. In this paper, we consider the generalized AMP (GAMP) algorithm and relate the method to more common optimization techniques. This analysis enables a precise characterization of the GAMP algorithm fixed-points that applies to arbitrary transforms. In particular, we show that the fixed points of the so-called max-sum GAMP algorithm for MAP estimation are critical points of a constrained maximization of the posterior density. The fixed-points of the sum-product GAMP algorithm for estimation of the posterior marginals can be interpreted as critical points of a certain mean-field variational optimization. Index Terms—Belief propagation, ADMM, variational optimization, message passing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Volkan ISIT2.pdf

Access type

openaccess

Size

272.91 KB

Format

Adobe PDF

Checksum (MD5)

a97d9cbb05b9104988125f1cae9e333c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés