Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Towards Predicting the Runtime of Iterative Analytics with PREDIcT
 
report

Towards Predicting the Runtime of Iterative Analytics with PREDIcT

Popescu, Adrian Daniel  
•
Balmin, Andrey
•
Ercegovac, Vuk
Show more
2013

Machine learning algorithms are widely used today for analytical tasks such as data cleaning, data categorization, or data filtering. At the same time, the rise of social media motivates recent uptake in large scale graph processing. Both categories of algorithms are dominated by iterative subtasks, i.e., processing steps which are executed repetitively until a convergence condition is met. Optimizing cluster resource allocations among multiple workloads of iterative algorithms motivates the need for estimating their resource requirements and runtime, which in turn requires: i) predicting the number of iterations, and ii) predicting the processing time of each iteration. As both parameters depend on the characteristics of the dataset and on the convergence function, estimating their values before execution is difficult. This paper proposes PREDIcT, an experimental methodology for predicting the runtime of iterative algorithms. PREDIcT uses sample runs for capturing the algorithm's convergence trend and per-iteration key input features that are well correlated with the actual processing requirements of the complete input dataset. Using this combination of characteristics we predict the runtime of iterative algorithms, including algorithms with very different runtime patterns among subsequent iterations. Our experimental evaluation of multiple algorithms on scale-free graphs shows a relative prediction error of 10%-30% for predicting runtime, including algorithms with up to 100x runtime variability among consecutive iterations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

predict-TR-187356.pdf

Access type

openaccess

Size

4.67 MB

Format

Adobe PDF

Checksum (MD5)

5126c29e107b8fd67f4f86c50bdc30dc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés