Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Computational Approach to the Geometry of Compact Riemann Surfaces
 
doctoral thesis

Computational Approach to the Geometry of Compact Riemann Surfaces

Racle, Manuel  
2013

The goal of this document is to provide a generalmethod for the computational approach to the topology and geometry of compact Riemann surfaces. The approach is inspired by the paradigms of object oriented programming. Our methods allow us in particular to model, for numerical and computational purposes, a compact Riemann surface given by Fenchel-Nielsen parameters with respect to an arbitrary underlying graph, this in a uniformand robust manner. With this programming model established we proceed by proposing an algorithmthat produces explicit compact fundamental domains of compact Riemann surfaces as well as generators of the corresponding Fuchsian groups. In particular, we shall explain how onemay obtain convex geodesic canonical fundamental polygons. In a second part we explain in what manner simple closed geodesics are represented in our model. This will lead us to an algorithm that enumerates all these geodesics up to a given prescribed length. Finally, we shall briefly overview a number of possible applications of our method, such as finding the systoles of a Riemann surface, or drawing its Birman-Series set in a fundamental domain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH5719.pdf

Access type

openaccess

Size

2.05 MB

Format

Adobe PDF

Checksum (MD5)

5be6d21737b414faf6342101f8855924

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés