Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Achieving Efficient Work-Stealing for Data-Parallel Collections
 
report

Achieving Efficient Work-Stealing for Data-Parallel Collections

Prokopec, Aleksandar  
•
Odersky, Martin  
2013

In modern programming high-level data-structures are an important foundation for most applications. With the rise of the multi-core era, there is a growing trend of supporting data-parallel collection operations in general purpose programming languages and platforms. To facilitate object-oriented reuse these operations are highly parametric, incurring abstraction performance penalties. Furthermore, data-parallel operations must scale when used in problems with irregular workloads. Work-stealing is a proven load-balancing technique when it comes to irregular workloads, but general purpose work-stealing also suffers from abstraction penalties. In this paper we present a generic design of a data-parallel collections framework based on work-stealing for shared-memory architectures. We show how abstraction penalties can be overcome through callsite specialization of data-parallel operations instances. Moreover, we show how to make work-stealing fine-grained and efficient when specialized for particular data-structures. We experimentally validate the performance of different data-structures and data-parallel operations, achieving up to 60X better performance with abstraction penalties eliminated and 3X higher speedups by specializing work-stealing compared to existing approaches.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

workstealing-collections.pdf

Access type

openaccess

Size

325.24 KB

Format

Adobe PDF

Checksum (MD5)

20612dc0e223d3ee867d6d69b2a3ba1c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés