Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. O-17 NMR and Density Functional Theory Study of the Dynamics of the Carboxylate Groups in DOTA Complexes of Lanthanides in Aqueous Solution
 
research article

O-17 NMR and Density Functional Theory Study of the Dynamics of the Carboxylate Groups in DOTA Complexes of Lanthanides in Aqueous Solution

Mayer, Florian
•
Platas-Iglesias, Carlos
•
Helm, Lothar  
Show more
2012
Inorganic Chemistry

The rotation of the carboxylate groups in DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) complexes of several lanthanide ions and Sc3+ was investigated with density functional theory (DFT) calculations and with variable temperature O-17 NMR studies at 4.7-18.8 T. The data obtained show that the rotation is much slower than the other dynamic processes taking place in these complexes. The exchange between the bound and unbound carboxylate oxygen atoms for the largest Ln(3+) ions (La3+-> Sm3+) follows a pathway via a transition state in which both oxygens of the carboxylate group are bound to the Ln(3+) ion, whereas for the smaller metal ions (Tm3+, Lu3+, Sc3+) the transition state has a fully decoordinated carboxylate group. The activation free energies show a steady increase from about 75 to 125-135 kJ.mol(-1) going from La3+ to Lu3+. This computed trend is consistent with the results of the O-17 NMR measurements. Fast exchange between bound and unbound carboxylate oxygen atoms was observed for the diamagnetic La-DOTA, whereas for Pr-, Sm-, Lu-, and Sc-DOTA the exchange was slow on the NMR time scale. The trends in the linewidths for the various metal ions as a function of the temperature agree with trends in the rates as predicted by the DFT calculations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ic51-170.pdf

Access type

restricted

Size

1.95 MB

Format

Adobe PDF

Checksum (MD5)

2f82c9e07a040733b0fb2a25a48be53e

Loading...
Thumbnail Image
Name

ic51-170_supp.pdf

Access type

restricted

Size

315.24 KB

Format

Adobe PDF

Checksum (MD5)

088519ede4ce838e015a9c1d9e0e3be6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés