Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)(3)(N,N)] and [Re(imidazole)(CO)(3)(N,N)](+): Diimine Effects
 
Loading...
Thumbnail Image
research article

Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)(3)(N,N)] and Re(imidazole)(CO)(3)(N,N): Diimine Effects

El Nahhas, Amal  
•
Consani, Cristina  
•
Blanco-Rodriguez, Ana Maria
Show more
2011
Inorganic Chemistry

Femto- to picosecond excited-state dynamics of the complexes Re(L)(CO)(3)(N,N) (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650-285 nm range (using broad-band UV probe pulses around 300 rim) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations, Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (similar to 100 fs)(-1) than in imidazole (similar to 150 fs)(-1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV-vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited state absorption originates mostly from mixed L;N,N center dot- -> Re-II ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly pi pi*(bpy(center dot-)) transitions, For phen and dmp, the UV excited-state absorption occurs at similar to 305 run, originating from a series of mixed pi pi* and Re -> L;N,N center dot- MLCT transitions. UV-vis transient absorption features exhibit small intensity-and band-shape changes occurring with several lifetimes in the 1-5 ps range, while TRIR bands show small intensity changes (<= 5 ps) and shifts (similar to 1 and 6-10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (>= 15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ic102324p[1].pdf

Access type

restricted

Size

1.31 MB

Format

Adobe PDF

Checksum (MD5)

17015c13bdb0d898039f3158a1821018

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés