Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Global two-fluid simulations of tokamak SOL turbulence
 
conference poster not in proceedings

Global two-fluid simulations of tokamak SOL turbulence

Mosetto, Annamaria  
•
Halpern, Federico David  
•
Ricci, Paolo  
2011
European Fusion Theory Conference

We present non-linear self-consistent global simulations of the SOL plasma dynamics using the Global Braginskii Solver (GBS) code. The code solves on the drift-reduced Braginkii equations, with cold ions. Studied originally for the simulation of the Simple Magnetized Torus (SMT) experiment TORPEX (CRPP, Lausanne), the GBS code has been recently upgraded to describe the SOL turbulence with the introduction of the variable curvature along the magnetic field lines, the magnetic shear, and the electromagnetic effects. The code peculiarity lies in the capability of evolving self-consistently equilibrium and fluctuations as a results of the interplay among the sources, the turbulent transport and the plasma losses at the limiter plates. The non-linear simulations have been interpreted by means of linear analysis of the fluid equations modeling the system. This points out the presence of two main instabilities driving turbulence: the Drift Wave and the Resistive Balloning instabilities. The dependence of the instabilities growth rate and of their properties on the physical parameters of the system, for example the typical length of variation of the plasma density, the safety factor and the magnetic shear have been explained and we identify the regions where each instability dominates.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Poster_EFTC_2.pdf

Access type

openaccess

Size

1.08 MB

Format

Adobe PDF

Checksum (MD5)

554c1d5073c2db985c6d510dedadd55c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés