Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. The Dynamics of Adapting Neurons
 
doctoral thesis

The Dynamics of Adapting Neurons

Naud, Richard  
2011

How do neurons dynamically encode and treat information? Each neuron communicates with its distinctive language made of long silences intermitted by occasional spikes. The spikes are prompted by the pooled effect of a population of pre-synaptic neurons. To understand the operation made by single neurons is to create a quantitative description of their dynamics. The results presented in this thesis describe the necessary elements for a quantitative description of single neurons. Almost all chapters can be unified under the theme of adaptation. Neuronal adaptation plays an important role in the transduction of a given stimulation into a spike train. The work described here shows how adaptation is brought by every spike in a stereotypical fashion. The spike-triggered adaptation is then measured in three main types of cortical neurons. I analyze in detail how the different adaptation profiles can reproduce the diversity of firing patterns observed in real neurons. I also summarize the most recent results concerning the spike-time prediction in real neurons, resulting in a well-founded single-neuron model. This model is then analyzed to understand how populations can encode time-dependent signals and how time-dependent signals can be decoded from the activity of populations. Finally, two lines of investigation in progress are described, the first expands the study of spike-triggered adaptation on longer time scales and the second extends the quantitative neuron models to models with active dendrites.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH5217.pdf

Access type

openaccess

Size

30.54 MB

Format

Adobe PDF

Checksum (MD5)

42128e7d209ca9dbc0cbcc4b246507cf

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés